Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 195
Filtrar
1.
Protein Sci ; 33(4): e4922, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38501482

RESUMO

The present work describes an update to the protein covalent geometry and atomic radii parameters in the Xplor-NIH biomolecular structure determination package. In combination with an improved treatment of selected non-bonded interactions between atoms three bonds apart, such as those involving methyl hydrogens, and a previously developed term that affects the system's gyration volume, the new parameters are tested using structure calculations on 30 proteins with restraints derived from nuclear magnetic resonance data. Using modern structure validation criteria, including several formally adopted by the Protein Data Bank, and a clear measure of structural accuracy, the results show superior performance relative to previous Xplor-NIH implementations. Additionally, the Xplor-NIH structures compare favorably against originally determined NMR models.


Assuntos
Proteínas , Software , Proteínas/química , Espectroscopia de Ressonância Magnética/métodos , Ressonância Magnética Nuclear Biomolecular/métodos , Conformação Proteica
2.
Adv Sci (Weinh) ; : e2309217, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38476051

RESUMO

Pathogenic huntingtin exon-1 protein (httex1 ), characterized by an expanded polyglutamine tract located between the N-terminal amphiphilic region and a C-terminal polyproline-rich domain, forms fibrils that accumulate in neuronal inclusion bodies, and is associated with a fatal, autosomal dominant neurodegenerative condition known as Huntington's disease. Here a complete kinetic model is described for aggregation/fibril formation of a httex1 construct with a 35-residue polyglutamine repeat, httex1 Q35 . Using exchange NMR spectroscopy, it is previously shown that the reversible formation of a sparsely-populated tetramer of the N-terminal amphiphilic domain of httex1 Q35 , comprising a D2 symmetric four-helix bundle, occurs on the microsecond time-scale and is a prerequisite for subsequent nucleation and fibril formation on a time scale that is many orders of magnitude slower (hours). Here a unified kinetic model of httex1 Q35 aggregation is developed in which fast, reversible tetramerization is directly linked to slow irreversible fibril formation via conversion of pre-equilibrated tetrameric species to "active", chain elongation-capable nuclei by conformational re-arrangement with a finite, monomer-independent rate. The unified model permits global quantitative analysis of reversible tetramerization and irreversible fibril formation from a time series of 1 H-15 N correlation spectra recorded during the course of httex1 Q35 aggregation.

3.
J Phys Chem B ; 127(37): 7887-7898, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37681752

RESUMO

Longitudinal (Γ1) and transverse (Γ2) solvent paramagnetic relaxation enhancement (sPRE) yields field-dependent information in the form of spectral densities that provides unique information related to cosolute-protein interactions and electrostatics. A typical protein sPRE data set can only sample a few points on the spectral density curve, J(ω), within a narrow frequency window (500 MHz to ∼1 GHz). However, complex interactions and dynamics of paramagnetic cosolutes around a protein make it difficult to directly interpret the few experimentally accessible points of J(ω). In this paper, we show that it is possible to significantly extend the experimentally accessible frequency range (corresponding to a range from ∼270 MHz to 1.8 GHz) by acquiring a series of sPRE experiments at different temperatures. This approach is based on the scaling property of J(ω) originally proposed by Melchior and Fries for small molecules. Here, we demonstrate that the same scaling property also holds for geometrically far more complex systems such as proteins. Using the extended spectral densities derived from the scaling property as the reference dataset, we demonstrate that our previous approach that makes use of a non-Lorentzian Ansatz spectral density function to fit only J(0) and one to two J(ω) points allows one to obtain accurate values for the concentration-normalized equilibrium average of the electron-proton interspin separation ⟨r-6⟩norm and the correlation time τC, which provide quantitative information on the energetics and timescale, respectively, of local cosolute-protein interactions. We also show that effective near-surface potentials, ϕENS, obtained from ⟨r-6⟩norm provide a reliable and quantitative measure of intermolecular interactions including electrostatics, while ϕENS values obtained from only Γ1 or Γ2 sPRE rates can have significant artifacts as a consequence of potential variations and changes in the diffusive properties of the cosolute around the protein surface. Finally, we discuss the experimental feasibility and limitations of extracting the high-frequency limit of J(ω) that is related to ⟨r-8⟩norm and report on the extremely local intermolecular potential.

4.
Proc Natl Acad Sci U S A ; 120(21): e2305823120, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37186848

RESUMO

The chaperone Hsp104, a member of the Hsp100/Clp family of translocases, prevents fibril formation of a variety of amyloidogenic peptides in a paradoxically substoichiometric manner. To understand the mechanism whereby Hsp104 inhibits fibril formation, we probed the interaction of Hsp104 with the Alzheimer's amyloid-ß42 (Aß42) peptide using a variety of biophysical techniques. Hsp104 is highly effective at suppressing the formation of Thioflavin T (ThT) reactive mature fibrils that are readily observed by atomic force (AFM) and electron (EM) microscopies. Quantitative kinetic analysis and global fitting was performed on serially recorded 1H-15N correlation spectra to monitor the disappearance of Aß42 monomers during the course of aggregation over a wide range of Hsp104 concentrations. Under the conditions employed (50 µM Aß42 at 20 °C), Aß42 aggregation occurs by a branching mechanism: an irreversible on-pathway leading to mature fibrils that entails primary and secondary nucleation and saturating elongation; and a reversible off-pathway to form nonfibrillar oligomers, unreactive to ThT and too large to be observed directly by NMR, but too small to be visualized by AFM or EM. Hsp104 binds reversibly with nanomolar affinity to sparsely populated Aß42 nuclei present in nanomolar concentrations, generated by primary and secondary nucleation, thereby completely inhibiting on-pathway fibril formation at substoichiometric ratios of Hsp104 to Aß42 monomers. Tight binding to sparsely populated nuclei likely constitutes a general mechanism for substoichiometric inhibition of fibrillization by a variety of chaperones. Hsp104 also impacts off-pathway oligomerization but to a much smaller degree initially reducing and then increasing the rate of off-pathway oligomerization.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Humanos , Cinética , Peptídeos beta-Amiloides/metabolismo , Amiloide/química , Dobramento de Proteína , Chaperonas Moleculares/metabolismo , Fragmentos de Peptídeos/metabolismo , Doença de Alzheimer/metabolismo
5.
J Biomol NMR ; 77(3): 83-91, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37095392

RESUMO

A methyl Transverse Relaxation Optimized Spectroscopy (methyl-TROSY) based, multiple quantum (MQ) 13C Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion NMR experiment is described. The experiment is derived from the previously developed MQ 13C-1H CPMG scheme (Korzhnev in J Am Chem Soc 126: 3964-73, 2004) supplemented with a CPMG train of refocusing 1H pulses applied with constant frequency and synchronized with the 13C CPMG pulse train. The optimal 1H 'decoupling' scheme that minimizes the amount of fast-relaxing methyl MQ magnetization present during CPMG intervals, makes use of an XY-4 phase cycling of the refocusing composite 1H pulses. For small-to-medium sized proteins, the MQ 13C CPMG experiment has the advantage over its single quantum (SQ) 13C counterpart of significantly reducing intrinsic, exchange-free relaxation rates of methyl coherences. For high molecular weight proteins, the MQ 13C CPMG experiment eliminates complications in the interpretation of MQ 13C-1H CPMG relaxation dispersion profiles arising from contributions to exchange from differences in methyl 1H chemical shifts between ground and excited states. The MQ 13C CPMG experiment is tested on two protein systems: (1) a triple mutant of the Fyn SH3 domain that interconverts slowly on the chemical shift time scale between the major folded state and an excited state folding intermediate; and (2) the 82-kDa enzyme Malate Synthase G (MSG), where chemical exchange at individual Ile δ1 methyl positions occurs on a much faster time-scale.


Assuntos
Imageamento por Ressonância Magnética , Proteínas , Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas/química , Espectroscopia de Ressonância Magnética
6.
Proc Natl Acad Sci U S A ; 120(7): e2221036120, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36745787

RESUMO

G protein-coupled receptors (GPCR) activate numerous intracellular signaling pathways. The oligomerization properties of GPCRs, and hence their cellular functions, may be modulated by various components within the cell membrane (such as the presence of cholesterol). Modulation may occur directly via specific interaction with the GPCR or indirectly by affecting the physical properties of the membrane. Here, we use pulsed Q-band double electron-electron resonance (DEER) spectroscopy to probe distances between R1 nitroxide spin labels attached to Cys163 and Cys344 of the ß1-adrenergic receptor (ß1AR) in n-dodecyl-ß-D-maltoside micelles upon titration with two soluble cholesterol analogs, cholesteryl hemisuccinate (CHS) and sodium cholate. The former, like cholesterol, inserts itself into the lipid membrane, parallel to the phospholipid chains; the latter is aligned parallel to the surface of membranes. Global quantitative analysis of DEER echo curves upon titration of spin-labeled ß1AR with CHS and sodium cholate reveal the following: CHS binds specifically to the ß1AR monomer at a site close to the Cys163-R1 spin label with an equilibrium dissociation constant [Formula: see text] ~1.4 ± 0.4 mM. While no direct binding of sodium cholate to the ß1AR receptor was observed by DEER, sodium cholate induces specific ß1AR dimerization ([Formula: see text] ~35 ± 6 mM and a Hill coefficient n ~ 2.5 ± 0.4) with intersubunit contacts between transmembrane helices 1 and 2 and helix 8. Analysis of the DEER data obtained upon the addition of CHS to the ß1AR dimer in the presence of excess cholate results in dimer dissociation with species occupancies as predicted from the individual KD values.


Assuntos
Colato de Sódio , Esteróis , Espectroscopia de Ressonância de Spin Eletrônica , Receptores Acoplados a Proteínas G , Colesterol/química , Marcadores de Spin , Receptores Adrenérgicos
7.
J Biol Chem ; 299(4): 103037, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36806683

RESUMO

The bacterial MinE and MinD division regulatory proteins form a standing wave enabling MinC, which binds MinD, to inhibit FtsZ polymerization everywhere except at the midcell, thereby assuring correct positioning of the cytokinetic septum and even distribution of contents to daughter cells. The MinE dimer undergoes major structural rearrangements between a resting six-stranded state present in the cytoplasm, a membrane-bound state, and a four-stranded active state bound to MinD on the membrane, but it is unclear which MinE motifs interact with the membrane in these different states. Using NMR, we probe the structure and global dynamics of MinE bound to disc-shaped lipid bicelles. In the bicelle-bound state, helix α1 no longer sits on top of the six-stranded ß-sheet, losing any contact with the protein core, but interacts directly with the bicelle surface; the structure of the protein core remains unperturbed and also interacts with the bicelle surface via helix α2. Binding may involve a previously identified excited state of free MinE in which helix α1 is disordered, thereby allowing it to target the membrane surface. Helix α1 and the protein core undergo nanosecond rigid body motions of differing amplitudes in the plane of the bicelle surface. Global dynamics on the sub-millisecond time scale between a ground state and a sparsely populated excited state are also observed and may represent a very early intermediate on the transition path between the resting six-stranded and active four-stranded conformations. In summary, our results provide insights into MinE structural rearrangements important during bacterial cell division.


Assuntos
Bactérias , Proteínas de Bactérias , Proteínas de Ciclo Celular , Lipídeos , Proteínas de Bactérias/metabolismo , Proteínas de Ciclo Celular/metabolismo , Espectroscopia de Ressonância Magnética , Bactérias/citologia , Divisão Celular
8.
J Phys Chem Lett ; 13(48): 11271-11279, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36449372

RESUMO

Degenerate spin-systems consisting of magnetically equivalent nuclear spins, such as a 1H3 spin-system in selectively 13CH3-labeled proteins, present considerable challenges for the design of Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion NMR experiments to characterize chemical exchange on the micro-to-millisecond time-scale. Several approaches have been previously proposed for the elimination of deleterious artifacts observed in methyl 1H CPMG relaxation dispersion profiles obtained for (13C)1H3 groups. We describe an alternative, experimentally simple solution and design a "steady-state" methyl 1H CPMG scheme, where 90° or acute-angle (<90°) 1H radiofrequency pulses are applied after each CPMG echo in-phase with methyl 1H magnetization, resulting in the establishment of a "steady-state" for effective rates of magnetization decay. A simple computational procedure for quantitative analysis of the "steady-state" CPMG relaxation dispersion profiles is developed. The "steady-state" CPMG methodology is applied to two protein systems where exchange between major and minor species occurs in different regimes on the chemical shift time-scale.


Assuntos
Espectroscopia de Ressonância Magnética
9.
J Am Chem Soc ; 144(46): 21371-21388, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36346613

RESUMO

Solvent paramagnetic relaxation enhancement (sPRE) arising from nitroxide-based cosolutes has recently been used to provide an atomic view of cosolute-induced protein denaturation and to characterize residue-specific effective near-surface electrostatic potentials (ϕENS). Here, we explore distinct properties of the sPRE arising from nitroxide-based cosolutes and provide new insights into the interpretation of the sPRE and sPRE-derived ϕENS. We show that: (a) the longitudinal sPRE rate Γ1 is heavily dependent on spectrometer field and viscosity, while the transverse sPRE rate Γ2 is much less so; (b) the spectral density J(0) is proportional to the inverse of the relative translational diffusion constant and is related to the quantity ⟨r-4⟩norm, a concentration-normalized equilibrium average of the electron-proton interspin separation; and (c) attractive intermolecular interactions result in a shortening of the residue-specific effective correlation time for the electron-proton vector. We discuss four different approaches for evaluating ϕENS based on Γ2, J(0), Γ1, or ⟨r-6⟩norm. The latter is evaluated from the magnetic field dependence of Γ1 in conjunction with Γ2. Long-range interactions dominate J(0) and Γ2, while, at high magnetic fields, the contribution of short-range interactions becomes significant for J(ω) and hence Γ1; the four ϕENS quantities enable one to probe both long- and short-range electrostatic interactions. The experimental ϕENS potentials were evaluated using three model protein systems, two folded (ubiquitin and native drkN SH3) and one intrinsically disordered (unfolded state of drkN SH3), in relation to theoretical ϕENS potentials calculated from atomic coordinates using the Poisson-Boltzmann theory with either a r-6 or r-4 dependence.


Assuntos
Óxidos de Nitrogênio , Prótons , Eletricidade Estática , Desnaturação Proteica , Solventes
10.
J Phys Chem B ; 126(30): 5646-5654, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35877206

RESUMO

The global motions of ubiquitin, a model protein, on the surface of anisotropically tumbling 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (POPG):1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC) bicelles are described. The shapes of POPG:DHPC bicelles prepared with high molar ratios q of POPG to DHPC can be approximated by prolate ellipsoids, with the ratio of ellipsoid dimensions and dimensions themselves increasing with higher values of q. Adaptation of the nuclear magnetic resonance (NMR) relaxation-based approach that we previously developed for interactions of ubiquitin with spherical POPG liposomes (Ceccon, A. J. Am. Chem. Soc. 2016, 138, 5789-5792) allowed us to quantitatively analyze the variation in lifetime line broadening of NMR signals (ΔR2) measured for ubiquitin in the presence of q = 2 POPG:DHPC bicelles and the associated transverse spin relaxation rates (R2,B) of bicelle-bound ubiquitin. Ubiquitin, transiently bound to POPG:DHPC bicelles, undergoes internal rotation about an axis orthogonal to the surface of the bicelle and perpendicular to the principal axis of its rotational diffusion tensor on the low microsecond time scale (∼3 µs), while the rotation axis itself wobbles in a cone on a submicrosecond time scale (≤ 500 ns).


Assuntos
Lipossomos , Nanopartículas , Bicamadas Lipídicas/química , Espectroscopia de Ressonância Magnética/métodos , Ubiquitinas
11.
Proc Natl Acad Sci U S A ; 119(29): e2207690119, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858329

RESUMO

The N-terminal region of the huntingtin protein, encoded by exon-1 (httex1) and containing an expanded polyglutamine tract, forms fibrils that accumulate in neuronal inclusion bodies, resulting in Huntington's disease. We previously showed that reversible formation of a sparsely populated tetramer of the N-terminal amphiphilic domain, comprising a dimer of dimers in a four-helix bundle configuration, occurs on the microsecond timescale and is an essential prerequisite for subsequent nucleation and fibril formation that takes place orders of magnitude slower on a timescale of hours. For pathogenic httex1, such as httex1Q35 with 35 glutamines, NMR signals decay too rapidly to permit measurement of time-intensive exchange-based experiments. Here, we show that quantitative analysis of both the kinetics and mechanism of prenucleation tetramerization and aggregation can be obtained simultaneously from a series of 1H-15N band-selective optimized flip-angle short-transient heteronuclear multiple quantum coherence (SOFAST-HMQC) correlation spectra. The equilibria and kinetics of tetramerization are derived from the time dependence of the 15N chemical shifts and 1H-15N cross-peak volume/intensity ratios, while the kinetics of irreversible fibril formation are afforded by the decay curves of 1H-15N cross-peak intensities and volumes. Analysis of data on httex1Q35 over a series of concentrations ranging from 200 to 750 µM and containing variable (7 to 20%) amounts of the Met7O sulfoxide species, which does not tetramerize, shows that aggregation of native httex1Q35 proceeds via fourth-order primary nucleation, consistent with the critical role of prenucleation tetramerization, coupled with first-order secondary nucleation. The Met7O sulfoxide species does not nucleate but is still incorporated into fibrils by elongation.


Assuntos
Proteína Huntingtina , Multimerização Proteica , Éxons , Humanos , Proteína Huntingtina/química , Proteína Huntingtina/genética , Cinética , Domínios Proteicos , Sulfóxidos/química
12.
J Am Chem Soc ; 144(27): 12043-12051, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35759799

RESUMO

Calcium-loaded calmodulin (CaM/4Ca2+) comprises two domains that undergo rigid body reorientation from a predominantly extended conformation to a compact one upon binding target peptides. A recent replica-exchange molecular dynamics (MD) simulation on holo CaM/4Ca2+ suggested the existence of distinct structural clusters (substates) along the path from extended to compact conformers in the absence of substrates. Here, we experimentally demonstrate the existence of CaM/4Ca2+ substates trapped in local minima by three freezing/annealing regimes (slow, 40 s; intermediate, 1.5 s; fast, 0.5 ms) using pulsed Q-band double electron-electron resonance (DEER) EPR spectroscopy to measure interdomain distances between nitroxide spin-labels positioned at A17C and A128C in the N- and C-terminal domains, respectively. The DEER echo curves were directly fit to population-optimized P(r) pairwise distance distributions calculated from the coordinates of the MD clusters and compact crystal structure. DEER data on fully deuterated CaM/4Ca2+ were acquired at multiple values of the second echo period (10-35 µs) and analyzed globally to eliminate instrumental and overfitting artifacts and ensure accurate populations, peak positions, and widths. The DEER data for all three freezing regimes are quantitatively accounted for within experimental error by 5-6 distinct conformers comprising a predominantly populated extended form (60-75%) and progressively more compact states whose populations decrease as the degree of compactness increases. The shortest interdomain separation is found in the compact crystal structure, which has an occupancy of 4-6%. Thus, CaM/4Ca2+ samples high energy local minima comprising a few discrete substates of increasing compactness in a rugged energy landscape.


Assuntos
Cálcio , Calmodulina , Cálcio/química , Calmodulina/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Elétrons , Simulação de Dinâmica Molecular , Conformação Proteica , Marcadores de Spin
13.
J Cell Sci ; 135(12)2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35703323

RESUMO

Solution nuclear magnetic resonance (NMR) spectroscopy is a powerful technique for analyzing three-dimensional structure and dynamics of macromolecules at atomic resolution. Recent advances have exploited the unique properties of NMR in exchanging systems to detect, characterize and visualize excited sparsely populated states of biological macromolecules and their complexes, which are only transient. These states are invisible to conventional biophysical techniques, and play a key role in many processes, including molecular recognition, protein folding, enzyme catalysis, assembly and fibril formation. All the NMR techniques make use of exchange between sparsely populated NMR-invisible and highly populated NMR-visible states to transfer a magnetization property from the invisible state to the visible one where it can be easily detected and quantified. There are three classes of NMR experiments that rely on differences in distance, chemical shift or transverse relaxation (molecular mass) between the NMR-visible and -invisible species. Here, I illustrate the application of these methods to unravel the complex mechanism of sub-millisecond pre-nucleation oligomerization of the N-terminal region of huntingtin, encoded by exon-1 of the huntingtin gene, where CAG expansion leads to Huntington's disease, a fatal autosomal-dominant neurodegenerative condition. I also discuss how inhibition of tetramerization blocks the much slower (by many orders of magnitude) process of fibril formation.


Assuntos
Doença de Huntington , Éxons , Humanos , Doença de Huntington/genética , Espectroscopia de Ressonância Magnética , Ressonância Magnética Nuclear Biomolecular/métodos , Dobramento de Proteína
14.
Prog Nucl Magn Reson Spectrosc ; 128: 1-24, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35282867

RESUMO

A survey, primarily based on work in the authors' laboratory during the last 10 years, is provided of recent developments in NMR studies of exchange processes involving protein-ligand and protein-protein interactions. We start with a brief overview of the theoretical background of Dark state Exchange Saturation Transfer (DEST) and lifetime line-broadening (ΔR2) NMR methodology. Some limitations of the DEST/ΔR2 methodology in applications to molecular systems with intermediate molecular weights are discussed, along with the means of overcoming these limitations with the help of closely related exchange NMR techniques, such as the measurements of Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion, exchange-induced chemical shifts or rapidly-relaxing components of relaxation decays. Some theoretical underpinnings of the quantitative description of global dynamics of proteins on the surface of very high molecular weight particles (nanoparticles) are discussed. Subsequently, several applications of DEST/ΔR2 methodology are described from a methodological perspective with an emphasis on providing examples of how kinetic and relaxation parameters for exchanging systems can be reliably extracted from NMR data for each particular model of exchange. Among exchanging systems that are not associated with high molecular weight species, we describe several exchange NMR-based studies that focus on kinetic modelling of transient pre-nucleation oligomerization of huntingtin peptides that precedes aggregation and fibril formation.


Assuntos
Imageamento por Ressonância Magnética , Proteínas , Cinética , Ligantes , Espectroscopia de Ressonância Magnética/métodos , Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas/química
15.
Angew Chem Int Ed Engl ; 61(20): e202116403, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35247211

RESUMO

DNAJB6 is a prime example of an anti-aggregation chaperone that functions as an oligomer. DNAJB6 oligomers are dynamic and subunit exchange is critical for inhibiting client protein aggregation. The T193A mutation in the C-terminal domain (CTD) of DNAJB6 reduces both chaperone self-oligomerization and anti-aggregation of client proteins, and has recently been linked to Parkinson's disease. Here, we show by NMR, including relaxation-based methods, that the T193A mutation has minimal effects on the structure of the ß-stranded CTD but increases the population and rate of formation of a partially folded state. The results can be rationalized in terms of ß-strand peptide plane flips that occur on a timescale of ≈100 µs and lead to global changes in the overall pleat/flatness of the CTD, thereby altering its ability to oligomerize. These findings help forge a link between chaperone dynamics, oligomerization and anti-aggregation activity which may possibly lead to new therapeutic avenues tuned to target specific substrates.


Assuntos
Peptídeos , Agregados Proteicos , Proteínas de Choque Térmico HSP40/genética , Humanos , Chaperonas Moleculares , Proteínas do Tecido Nervoso , Conformação Proteica em Folha beta
16.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35105816

RESUMO

Recent advances in rapid mixing and freeze quenching have opened the path for time-resolved electron paramagnetic resonance (EPR)-based double electron-electron resonance (DEER) and solid-state NMR of protein-substrate interactions. DEER, in conjunction with phase memory time filtering to quantitatively extract species populations, permits monitoring time-dependent probability distance distributions between pairs of spin labels, while solid-state NMR provides quantitative residue-specific information on the appearance of structural order and the development of intermolecular contacts between substrate and protein. Here, we demonstrate the power of these combined approaches to unravel the kinetic and structural pathways in the binding of the intrinsically disordered peptide substrate (M13) derived from myosin light-chain kinase to the universal eukaryotic calcium regulator, calmodulin. Global kinetic analysis of the data reveals coupled folding and binding of the peptide associated with large spatial rearrangements of the two domains of calmodulin. The initial binding events involve a bifurcating pathway in which the M13 peptide associates via either its N- or C-terminal regions with the C- or N-terminal domains, respectively, of calmodulin/4Ca2+ to yield two extended "encounter" complexes, states A and A*, without conformational ordering of M13. State A is immediately converted to the final compact complex, state C, on a timescale τ ≤ 600 µs. State A*, however, only reaches the final complex via a collapsed intermediate B (τ ∼ 1.5 to 2.5 ms), in which the peptide is only partially ordered and not all intermolecular contacts are formed. State B then undergoes a relatively slow (τ ∼ 7 to 18 ms) conformational rearrangement to state C.


Assuntos
Cálcio/química , Calmodulina/química , Cálcio/metabolismo , Calmodulina/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Humanos , Cinética , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Domínios Proteicos , Dobramento de Proteína
17.
Annu Rev Biophys ; 51: 223-246, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35044800

RESUMO

Molecular chaperones are the guardians of the proteome inside the cell. Chaperones recognize and bind unfolded or misfolded substrates, thereby preventing further aggregation; promoting correct protein folding; and, in some instances, even disaggregating already formed aggregates. Chaperones perform their function by means of an array of weak protein-protein interactions that take place over a wide range of timescales and are therefore invisible to structural techniques dependent upon the availability of highly homogeneous samples. Nuclear magnetic resonance (NMR) spectroscopy, however, is ideally suited to study dynamic, rapidly interconverting conformational states and protein-protein interactions in solution, even if these involve a high-molecular-weight component. In this review, we give a brief overview of the principles used by chaperones to bind their client proteins and describe NMR methods that have emerged as valuable tools to probe chaperone-substrate and chaperone-chaperone interactions. We then focus on a few systems for which the application of these methods has greatly increased our understanding of the mechanisms underlying chaperone functions.


Assuntos
Lentes , Dobramento de Proteína , Humanos , Espectroscopia de Ressonância Magnética , Chaperonas Moleculares/química , Proteoma
18.
Angew Chem Weinheim Bergstr Ger ; 134(20): e202116403, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38505697

RESUMO

DNAJB6 is a prime example of an anti-aggregation chaperone that functions as an oligomer. DNAJB6 oligomers are dynamic and subunit exchange is critical for inhibiting client protein aggregation. The T193A mutation in the C-terminal domain (CTD) of DNAJB6 reduces both chaperone self-oligomerization and anti-aggregation of client proteins, and has recently been linked to Parkinson's disease. Here, we show by NMR, including relaxation-based methods, that the T193A mutation has minimal effects on the structure of the ß-stranded CTD but increases the population and rate of formation of a partially folded state. The results can be rationalized in terms of ß-strand peptide plane flips that occur on a timescale of ≈100 µs and lead to global changes in the overall pleat/flatness of the CTD, thereby altering its ability to oligomerize. These findings help forge a link between chaperone dynamics, oligomerization and anti-aggregation activity which may possibly lead to new therapeutic avenues tuned to target specific substrates.

19.
J Mol Biol ; 433(24): 167322, 2021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34688687

RESUMO

Human mitochondrial Hsp60 (mtHsp60) is a class I chaperonin, 51% identical in sequence to the prototypical E. coli chaperonin GroEL. mtHsp60 maintains the proteome within the mitochondrion and is associated with various neurodegenerative diseases and cancers. The oligomeric assembly of mtHsp60 into heptameric ring structures that enclose a folding chamber only occurs upon addition of ATP and is significantly more labile than that of GroEL, where the only oligomeric species is a tetradecamer. The lability of the mtHsp60 heptamer provides an opportunity to detect and visualize lower-order oligomeric states that may represent intermediates along the assembly/disassembly pathway. Using cryo-electron microscopy we show that, in addition to the fully-formed heptamer and an "inverted" tetradecamer in which the two heptamers associate via their apical domains, thereby blocking protein substrate access, well-defined lower-order oligomeric species, populated at less than 6% of the total particles, are observed. Specifically, we observe open trimers, tetramers, pentamers and hexamers (comprising ∼4% of the total particles) with rigid body rotations from one subunit to the next within ∼1.5-3.5° of that for the heptamer, indicating that these may lie directly on the assembly/disassembly pathway. We also observe a closed-ring hexamer (∼2% of the particles) which may represent an off-pathway species in the assembly/disassembly process in so far that conversion to the mature heptamer would require the closed-ring hexamer to open to accept an additional subunit. Lastly, we observe several classes of tetramers where additional subunits characterized by fuzzy electron density are caught in the act of oligomer extension.


Assuntos
Chaperonina 60/química , Proteínas Mitocondriais/química , Microscopia Crioeletrônica , Humanos , Multimerização Proteica
20.
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...